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1 Centre de Physique Théorique, CNRS Luminy, case 907, 13288 Marseille Cedex 9, France
2 Centro de Fusão Nuclear, EURATOM/IST Association, Instituto Superior Técnico, Av. Rovisco Pais 1,
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Abstract. A stochastic representation for the solutions of the Poisson-Vlasov equation, with several charged
species, is obtained. The representation involves both an exponential and a branching process and it
provides an intuitive characterization of the nature of the solutions and its fluctuations. Here, the stochastic
representation is also proposed as a tool for the numerical evaluation of the solutions.

PACS. 52.20.-j Elementary processes in plasmas – 52.65.Ff Fokker-Planck and Vlasov equation – 05.10.Gg
Stochastic analysis methods

1 Introduction

It is well-known that the solutions of linear elliptic and
parabolic equations, both with Cauchy and Dirichlet
boundary conditions, have a probabilistic interpretation.
This is a very classical field which may be traced back to
the work of Courant, Friedrichs and Lewy [1] in the 20’s.
In spite of the pioneering work of McKean [2], the ques-
tion of whether useful probabilistic representations could
also be found for a large class of nonlinear equations re-
mained an essentially open problem for many years. It
was only in the 90’s that, with the work of Dynkin [3,4],
such a theory started to take shape. For nonlinear diffu-
sion processes, the branching exit Markov systems, that
is, processes that involve both diffusion and branching,
seem to play the same role as Brownian motion in the lin-
ear equations. However the theory is still limited to some
classes of nonlinearities and there is much room for further
mathematical improvement.

Another field, where considerable recent advances
were achieved, was the probabilistic representation of the
Fourier transformed Navier-Stokes equation, first with the
work of LeJan and Sznitman [5], later followed by exten-
sive developments of the Oregon school [6–8]. In all cases
the stochastic representation defines a process for which
the mean values of some functionals coincide with the so-
lution of the deterministic equation.

Stochastic representations, in addition to its intrinsic
mathematical relevance, have several practical implica-
tions:

(i) they provide an intuitive characterization of the
equation solutions;
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(ii) by the study of exit times from a domain they some-
times provide access to quantities that cannot be ob-
tained by perturbative methods [9];

(iii) they provide a calculation tool which may replace,
for example, the need for very fine integration grids
at high Reynolds numbers;

(iv) by associating a stochastic process to the solutions
of the equation, they may also provide an intrinsic
characterization of the nature of the fluctuations as-
sociated to the physical system. In some cases the
stochastic process is essentially unique, in others
there is a class of processes with means leading to
the same solution.

In [10] a stochastic representation has been obtained for
the solutions of the Fourier-transformed Poisson-Vlasov
equation in 3 dimensions for particles of one charge species
on an arbitrary background. Here this result is generalized
for the case of several charged species. As before the rep-
resentation involves both an exponential and a branching
process, the solution being obtained from the expectation
value of a multiplicative functional over backwards in time
realizations of the process.

Proposition 1 in Section 2 establishes, for the multi-
species equation, a stochastic process similar to the one
obtained in [10] for the single species equation in a back-
ground. Then, using the integrated nature of the Coulomb
interaction in the Poisson-Vlasov equation a new, sim-
pler, type of process is obtained to represent the solution
(proposition 2).

The backwards in time realization of the process turns
out to be appropriate for (parallelizable) numerical eval-
uation of the solutions and the Fourier representation ad-
equate to obtain information on the small scale behavior.
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Hence, the rest of the paper is dedicated to the imple-
mentation of the stochastic representation as a numerical
tool to construct the equation solutions. Advantages and
problems of this numerical method are also discussed and
compared with other probabilistic approaches.

2 The stochastic representations

Consider a multi-species Poisson-Vlasov equation in 3+1
space-time dimensions

∂fi

∂t
+ �v · ∇xfi − ei

mi
∇xΦ · ∇vfi = 0 (1)

(i = 1, 2), with

∆xΦ = −4π

{∑
i

ei

∫
fi (�x,�v, t) d3v

}
. (2)

Passing to the Fourier transform

Fi (ξ, t) =
1

(2π)3

∫
d6ηfi (η, t) eiξ·η (3)

with η = (�x,�v) and ξ = (�ξ1, �ξ2) � (ξ1, ξ2). and changing
variables to

τ = γ (|ξ2|) t (4)

where γ (|ξ2|) is a positive continuous function satisfying

γ (|ξ2|) = 1 if |ξ2| < 1

γ (|ξ2|) ≥ |ξ2| if |ξ2| ≥ 1

leads to

∂Fi (ξ, τ)
∂τ

=
�ξ1

γ (|ξ2|) · ∇ξ2Fi (ξ, τ)

−4πei

mi

∫
d3ξ′1Fi (ξ1 − ξ′1, ξ2, τ)

×
�ξ2 · ξ̂′1

γ (|ξ2|) |ξ′1|
∑

j

ejFj (ξ′1, 0, τ) (5)

with ξ̂1 =
�ξ1

|ξ1| .

For convenience, a stochastic representation is going
to be written for the following function

χi (ξ1, ξ2, τ) = e−λτ Fi (ξ1, ξ2, τ)
h (ξ1)

(6)

with λ a constant and h (ξ1) a positive function to be
specified later on. The integral equation for χ (ξ1, ξ2, τ) is

χi (ξ1, ξ2, τ) = e−λτχi

(
ξ1, ξ2 + τ

ξ1

γ (|ξ2|) , 0
)

− 8πei

miλ

(
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h (ξ1)

∫ τ

0

dsλe−λs

×
∫
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eje

λ(τ−s)χj(ξ′1, 0, τ−s) (7)

with(
|ξ′1|−1

h ∗ h
)

(ξ1) =
∫

d3ξ′1 |ξ′1|−1
h (ξ1 − ξ′1)h (ξ′1) (8)

and

p (ξ1, ξ
′
1) =

|ξ′1|−1
h (ξ1 − ξ′1)h (ξ′1)(
|ξ′1|−1

h ∗ h
) . (9)

Equation (7) has a stochastic interpretation as an expo-
nential process (with a time shift in the second variable)
plus a branching process. p(ξ1, ξ

′
1)d

3ξ′1 is the probability
that, given a ξ1 mode, one obtains a (ξ1 − ξ′1, ξ′1) branch-
ing with ξ′1 in the volume (ξ′1, ξ

′
1 + d3ξ′1). χ(ξ1, ξ2, τ) is

computed from the expectation value of a multiplicative
functional associated to the processes. Convergence of the
multiplicative functional hinges on the fulfilling of the fol-
lowing conditions:

(A)
∣∣∣∣Fi (ξ1, ξ2, 0)

h (ξ1)

∣∣∣∣ ≤ 1,

(B)
(
|ξ′1|−1

h ∗ h
)

(ξ1) ≤ h (ξ1) .

Condition (B) is satisfied, for example, for

h (ξ1) =
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)2 and c ≤ 1

3π
. (10)

Indeed computing |ξ′1|−1
h ∗ h one obtains
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(
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2 |ξ1|3
(
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)2

(
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2
− tan−1

(
2 − 2 |ξ1|2

4 |ξ1|

))⎫⎪⎬
⎪⎭ . (11)

Then 1
h(ξ1) (|ξ′1|−1h ∗ h)(ξ1) is bounded by a constant for

all |ξ1|, and choosing c sufficiently small, condition (B) is
satisfied.
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Once h(ξ1) consistent with (B) is found, condition (A)
only puts restrictions on the initial conditions. Now one
constructs the stochastic process X(ξ1, ξ2, τ).

Because e−λτ is the survival probability during time τ
of an exponential process with parameter λ and λe−λsds
the decay probability in the interval (s, s+ds), χi(ξ1, ξ2, τ)
in equation (7) is obtained as the expectation value of
a multiplicative functional for the following backward-in-
time process, which we denote as process I.

Starting at (ξ1, ξ2, τ), a particle of species i lives for an
exponentially distributed time s up to time τ − s. At its
death a coin ls (probabilities 1

2 , 1
2 ) is tossed. If ls = 0 two

new particles of the same species as the original one are
born at time τ−s with Fourier modes (ξ1−ξ′1, ξ2+s ξ1

γ(|ξ2|) )
and (ξ′1, 0) with probability density p(ξ1, ξ

′
1). If ls = 1

the two new particles are of different species. Each one
of the newborn particles continues its backward-in-time
evolution, following the same death and birth laws. When
one of the particles of this tree reaches time zero it samples
the initial condition. The multiplicative functional of the
process is the product of the following contributions:

– at each branching point where two particles are born,
the coupling constant is

gij (ξ1, ξ
′
1, s) =

− eλ(τ−s) 8πeiej

miλ

(
|ξ′1|−1

h ∗ h
)

(ξ1)

h (ξ1)

�ξ2 · ξ̂′1
γ (|ξ2|) ; (12)

– when one particle reaches time zero and samples the
initial condition the coupling is

g0i (ξ1, ξ2) =
Fi (ξ1, ξ2, 0)

h (ξ1)
. (13)

The multiplicative functional is the product of all these
couplings for each realization of the process X (ξ1, ξ2, τ),
this process being obtained as the limit of the following
iterative process

X
(k+1)
i (ξ1, ξ2, τ) =

χi

(
ξ1, ξ2 + τ

ξ1

γ (|ξ2|) , 0
)

1[s>τ ] + gii (ξ1, ξ
′
1, s)

×X
(k)
i

(
ξ1 − ξ′1, ξ2 + s

ξ1

γ (|ξ2|) , τ − s

)

×X
(k)
i (ξ′1, 0, τ − s)1[s<τ ]1[ls=0]

+gij (ξ1, ξ
′
1, s)X

(k)
i

(
ξ1 − ξ′1, ξ2 + s

ξ1

γ (|ξ2|) , τ − s

)

×X
(k)
j (ξ′1, 0, τ − s)1[s<τ ]1[ls=1]. (14)

Then, each χi (ξ1, ξ2, τ) is the expectation value of the
functional.

χi (ξ1, ξ2, τ) = E
{
Π (g0g

′
0 · · · ) (giig

′
ii · · · )

(
gijg

′
ij · · ·

)}
.

(15)

Fig. 1. A sample path of the stochastic process I.

For example, for the realization in Figure 1 the contribu-
tion to the multiplicative functional is

gij(ξ1, ξ
′
1, τ − s1)gji(ξ1 − ξ′1, ξ

′′
1 , τ − s2)gii(ξ′1, ξ

′′′
1 , τ − s3)

× g0i(ξ′1 − ξ′′′1 , k3)g0i(ξ′′′1 , 0)g0j(ξ′′1 , 0)g0i(ξ1 − ξ′1 − ξ′′1 , k2)
(16)

and

k = ξ2

k1 = k + (τ − τ1)
ξ1

γ (|ξ2|)
k2 = k1 + (τ2 − τ1)

(ξ1 − ξ′1)
γ (|k1|)

k3 = (τ3 − τ1) ξ′1. (17)

With the conditions (A) and (B), choosing

λ ≥
∣∣∣∣ 8πeiej

mini {mi}
∣∣∣∣ (18)

and
c ≤ e−λτ 1

3π
(19)

the absolute value of all coupling constants is bounded by
one. The branching process, being identical to a Galton-
Watson process, terminates with probability one and the
number of inputs to the functional is finite (with probabil-
ity one). With the bounds on the coupling constants, the
multiplicative functional is bounded by one in absolute
value almost surely.

Once a stochastic representation is obtained for
χ (ξ1, ξ2, τ), one also has, by (6), a stochastic representa-
tion for the solution of the Fourier-transformed Poisson-
Vlasov equation and one obtains:

Proposition 1. The process I, above described, provides a
stochastic representation for the Fourier-transformed so-
lutions of the Poisson-Vlasov equation Fi (ξ1, ξ2, t) for any
arbitrary finite value of the arguments, provided the ini-
tial conditions at time zero satisfy the boundedness condi-
tions (A).
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Fig. 2. A one-sided tree corresponding to process II.

So far we have constructed a general process that pro-
vides a stochastic representation for the interacting Vlasov
equation, not only for the Poisson case, but also for more
general situations with quadratic nonlinearities. However,
because of the integrated nature of the Coulomb interac-
tion, the Poisson case is special in that there is also a rep-
resentation by a simpler process. Looking at equation (7)
one sees that because of the factor �ξ2 · ξ̂′1 only the trees
where the mode χj(ξ′1, 0, τ − s) survives until time zero
will contribute to the functional. That is, the only trees
with non-zero contributions to the functional (15) are the
one-sided trees represented in Figure 2. Therefore for the
calculation of the solution one may replace χj(ξ′1, 0, τ − s)
by the initial condition computed at (ξ′1, (τ − s)ξ′1). The
process then becomes the following linear process with
random couplings

X
(k+1)
i (ξ1, ξ2, τ) =

χi

(
ξ1, ξ2 + τ

ξ1

γ (|ξ2|) , 0
)

1[s>τ ]

+g′ii (ξ1, ξ
′
1, s)X

(k)
i

(
ξ1 − ξ′1, ξ2 + s

ξ1

γ (|ξ2|) , τ − s

)
×1[s<τ ]1[ls=0]

+g′ij (ξ1, ξ
′
1, s)X

(k)
i

(
ξ1 − ξ′1, ξ2 + s

ξ1

γ (|ξ2|) , τ − s

)
×1[s<τ ]1[ls=1] (20)

the coupling constant at the branchings being

g′ij (ξ1, ξ
′
1, s) =

− 8πeiej

miλ

(
|ξ′1|−1

h ∗ h
)

(ξ1)

h (ξ1)

�ξ2 · ξ̂′1
γ (|ξ2|)χj (ξ′1, (τ − s) ξ′1, 0) .

(21)

The functional representing the solution is the product
of all branching coupling constants times one additional
factor corresponding to the last non-branching mode. The

result is the following:

Proposition 2. The linear process II, defined by (20) and
(21) also provides a stochastic representation of the solu-
tions of the Poisson-Vlasov equation, the conditions on
the kernels and initial conditions being given by (A), (10)
and (18).

3 Stochastic representation and numerical
codes

The backwards-in-time probabilistic representations, ob-
tained in Section 2, seem appropriate for the numerical
evaluation of Fourier-localized solutions. Good statistics
requires the average of the multiplicative functional over
many realization trees. In the backwards in time realiza-
tion one fixes a particular mode at time τ and generates
as many trees as needed for that particular mode. Notice
that by studying high Fourier modes one may obtain in-
formation about the small scale behavior of the solution
without having the need for a fine grid as it would be
necessary in a real space numerical code. Each realization
tree being independent of all the others, the probabilistic
code is also appropriate for parallelization.

We will not report, in this paper, extensive calcula-
tions using these representations and the corresponding
codes. Nevertheless we list all the probability distributions
needed to implement the method.

For the construction of the sample trees and the calcu-
lation of the functional, the following probability densities
are needed:
– the probability of a ξ1-mode branching into ξ′1 and

ξ1 − ξ′1 modes

p (ξ1, ξ
′
1) =

|ξ′1|−1
(
1 + |ξ1 − ξ′1|2

)−2 (
1 + |ξ′1|2

)−2

Γ (|ξ1|)
(22)

with Γ (ξ1) given by equation (11). One notices that,
for each |ξ1|, this probability is only function of two
variables, the |ξ′1| and the angle between ξ1 and ξ′1.
Therefore defining

z =
1

1 + |ξ′1|2
(23)

and changing the integration measure one obtains a
– probability density p (z, cos θ)

p (z, cos θ) =
π

Γ (|ξ1|)
1(

|ξ1|2 + 1
z − 2 |ξ1| cos θ

√
1
z − 1

)2

(24)
with z in the interval (0, 1) and cos θ in the interval
(−1, 1).
Because the inverse of the cumulative distribution
functions have not a nice analytic form, we may use
the reject method in the plane (z, cos θ) to simulate
this probability distribution. For this, one needs

p (z, cos θ)max =
π

Γ (|ξ1|) (25)
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which is obtained for cos2 θ = 1 and 1
z = |ξ1|2 + 1.

However because p (z, cos θ)max is very large for large
|ξ1| in a narrow region, it is more efficient to use

– the integrated p (z) density

p (z) =
2π

Γ (|ξ1|)
1(

|ξ1|2 − 1
z

)2

+ 4 |ξ1|2
(26)

with p(z)max = p(min(|ξ1|−2, 1)), to choose z and then,
once z is chosen, to use

– the conditional probability density p (cos θ|z)

p (cos θ|z) =

(
|ξ1|2 − 1

z

)2

+ 4 |ξ1|2

2
(
|ξ1|2 + 1

z − 2 |ξ1| cos θ
√

1
z − 1

)2

(27)
with

max
θ

p (cos θ|z) =

(
|ξ1|2 − 1

z

)2

+ 4 |ξ1|2

2
(
|ξ1|2 + 1

z − 2 |ξ1|
√

1
z − 1

)2

(28)
to choose cos θ.

Once z and cos θ are chosen, one computes |ξ′1| =
√

1
z − 1

and chooses
ϕ = 2πRAND

RAND being a random variable uniformly distributed in
the interval (0, 1). Then one obtains

ξ′1 = |ξ′1| (sin θ cosϕ, sin θ sin ϕ, cos θ)

and ξ1 − ξ′1.
Notice that only the amplitudes of the Fourier modes

|ξ′1| and |ξ1 − ξ′1| are needed as inputs to compute the
probabilities in the next branchings but the full vector is
needed to compute ξ2. Finally the lifetime τ of each mode
is obtained from

τ =
ln (RAND)

λ
. (29)

For the trees a standard indexation is used, each tree being
a row vector of integer numbers with the number k at
the position n meaning that that mode was born at the
branching of the mode in the position k.

The conditions (A), (10) and (18) guarantee that
all factors entering the multiplicative functional (15) are
bounded by one, implying that the functional itself is also
bounded. This, together with the Galton-Watson nature
of the branching, insures convergence of the expectation
value. However, in practice, this leads to very small val-
ues of the functional and for large times (large trees)
one may be faced with round-off inaccuracies in the com-
puter. In fact the limitation to factors strictly not larger
than one is only imposed for mathematical convenience.
What is actually needed for convergence is that the func-
tional be bounded by some value with probability one.

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

T

F
Fig. 3. Time evolution of some Fourier modes for the F (1)

initial condition, T = λt.

A more relaxed condition on the constants may therefore
be obtained by imposing

∣∣pngn
max (I)Fn+1

max

∣∣ < M for pro-
cess I and |pngn

max (II)Fmax| < M for process II, pn being
the probability of a tree with N branchings, gn

max (I) and
gn
max (II) the maximum values of the couplings and Fmax

the maximum value of the initial condition.
To test the method we have studied the time evolu-

tion of small and large Fourier modes in a plasma with
two particle species of opposite charges, one light and the
other heavy, with two types of initial Fourier distribution
functions, namely

F
(1)
i (ξ1, ξ2, 0) = C

(1)
0 e−γ|ξ1|2e−βi|ξ2|2 (30)

and

F
(2)
+ (ξ1, ξ2, 0) = C

(2)
0+ e−γ|ξ1|2e−β+|ξ2|2

F
(2)
− (ξ1, ξ2, 0) = C

(2)
0−e−γ|ξ1|2θ

(
k − |ξ2|2

)
(31)

β+ = 40β− and the C
(i)′
0 s are chosen to fulfill condi-

tion (A). For the initial condition we have chosen ξ1 =
(0.01, 0.01, 0.01) and varied |ξ2|2 in the range 3 × 10−4

to 7. Then, the time evolution is computed using the one-
sided representation (process II). Some results are shown
in Figures 3 and 4, with time in units of 1

λ . Although it is
known that on R

3 and without an external force there are
no nontrivial steady states when both charges of opposite
sign can move [11,12], one can see the relative stability of
the Fourier modes for short times for the Gaussian initial
condition F (1), whereas for the F (2) initial condition one
sees the appearance of growing Fourier modes that were
not present in the initial density. Although the points were
computed for the same set of final τ ′s, in the plots we show
the actual time t, obtained from (4).
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Fig. 4. Time evolution of some Fourier modes for the F (2)

initial condition, T = λt.

Notice that to obtain a reasonable stability of the aver-
aged functional one needs to compute many sample trees.
The points shown in the figures were obtained with aver-
ages over 106 or 2× 106 trees, depending on the evolution
time. The reason for the need for a large number of sample
trees arises from the fact that, for large times, most trees
contribute a very small value to the average, the actual
average arising from the contribution of a small number
of them. This calls for the need to control the results by
a large deviation analysis (see below).

4 Remarks and conclusions

1. Mostly when localized solutions in Fourier space (or
in configuration space for other stochastic represen-
tations) are desired, the method seems appropriate.
When a global calculation of the solution is desired, the
stochastic representation method is probably not com-
petitive with other current simulation methods. The
computational example presented in Section 3, merely
illustrative of the method, was obtained with modest
computational means. Our purpose was mostly to test
the stability of the results. To obtain good statistics
and also to study the fluctuation spectrum of the pro-
cess, many sample trees have to be used for each initial
condition. However, because each tree is independent
from the others and also because after the branching
each mode evolves independently of the others, this
algorithm is well suited for parallelization and dis-
tributed computing. In this sense the stochastically-
based algorithms might also become competitive even
for global calculations using parallel computing.

2. The fluctuations around the mean in a branching pro-
cess are typically very much non-Gaussian. Therefore
a simple calculation of the standard deviation or other
lower order momenta are not sufficient to check the re-
liability of the results. A large deviation analysis is rec-

0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085
0

0.02

0.04

0.06

0.08

x

I(
x)

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
0

1

2

3

4

5

6
x 10

−3

x

I(
x)

Fig. 5. The behavior of the deviation function for a sample of
size 5 × 105.

ommended for numerical calculations using branching
processes. Some general results on large deviations in
branching processes are known [13–16]. Of more practi-
cal importance are probably methods to estimate large
deviation effects directly from the data. This may be
done, for example, by the empirical construction of the
deviation function. This is done by the empirical con-
struction of the free energy and from it, by Legendre
transform, the deviation function. For details we refer
to [17]. Given a deviation function I (x), the probabil-
ity of obtaining a value x for the empirical average of
a sample of size n is

Pn (dx) � e−nI(x)dx

where � means logarithmic equivalence. We have used
the method described in [17] to check the reliability of
the results. In Figure 5 we present the empirically ob-
tained deviation function for a sample of 5×105 trees.
At first sight the regular behavior of I (y) around the
mean, seen in the upper plot of Figure 5, would seem
to indicate that the distribution is Gaussian. However
expanding a little more (in the lower plot) the domain
of the variable x one sees the very non-Gaussian na-
ture of the data. It means that, had we used a smaller
sample, any empirical mean in the range 0.04–0.075
would have been likely. A rough lower bound on the
size of the needed sample may be obtained from the
inverse of the deviation function at the point where
the behavior of I (x) changes.

3. Stochastic representations of the solutions of determin-
istic equations may have some relevance for the study
of the fluctuation spectrum. In the past, the fluctu-
ation spectrum of charged fluids was studied either
by the BBGKY hierarchy derived from the Liouville
or Klimontovich equations, with some sort of closure
approximation, or by direct approximations to the N -
body partition function or by models of dressed test
particles, etc. (see reviews in [18,19]). Alternatively,
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by linearizing the Vlasov equation about a stable so-
lution and diagonalizing the Hamiltonian, a canonical
partition function may be used to compute correlation
functions [20].
As a model for charged fluids, the Vlasov equation is
just a mean-field collisionless theory. Therefore, it is
unlikely that, by itself, it will contain full information
on the fluctuation spectrum. Kinetic and fluid equa-
tions are obtained from the full particle dynamics in
the 6N -dimensional phase-space by a chain of reduc-
tions. Along the way, information on the actual nature
of fluctuations and turbulence may have been lost. An
accurate model of turbulence may exist at some inter-
mediate (mesoscopic) level, but not necessarily in the
final mean-field equation.
When a stochastic representation is constructed, one
obtains a process for which the mean value is the solu-
tion of the mean-field equation. The process itself con-
tains more information. This does not mean, of course,
that the process is an accurate mesoscopic model of
Nature, because we might be climbing up a path dif-
ferent from the one that led us down from the par-
ticle dynamics. Nevertheless, insofar as the stochastic
representation is qualitatively unique and related to
some reasonable iterative process, it provides a surro-
gate mesoscopic model from which fluctuations are eas-
ily computed. This is what we have referred elsewhere
as the stochastic principle [10]. At the minimum, one
might say that the stochastic principle provides yet
another closure procedure for the kinetic equations.

4. In this paper we have concentrated on stochastic pro-
cesses that, by themselves, generate the solutions of
nonlinear partial differential equations and that, there-
fore, may be used to obtain practical simulation codes.
Another stochastic approach to nonlinear differential
equations concerns the stochastic interpretation of
given solutions. For example, given a solution f (t, x, v)
of the Boltzman equation

∂f

∂t
+ �v · ∇xf = Q (f, f) f (0, x, v) = f0 (x, v) (32)

with a quadratic collision kernel,

Q (f, f) (t, x, v) =
∫

S2

∫
R3

(f (t, x, v∗) f (t, x, w∗)

−f (t, x, v) f (t, x, w))B (v − w, ν) dwdν (33)

the Boltzman equation may be interpreted as a
Kolmogorov equation for the law Pt of a stochas-
tic process, B (v − w, ν) f (t, x, w) dwdν being a jump
measure [21]. That is, given a solution, it may be in-
terpreted as generating a stochastic process, but this
is quite different from giving an independent process
that, by itself, generates the solution. Nevertheless the
stochastic interpretation may still be useful to charac-
terize general properties of the solution or to develop
approximating interacting particle systems.

5. When is a stochastic representation-based algorithm
competitive with the existing deterministic algo-
rithms? There is, we think, no general answer to this

question. Nevertheless there are a few considerations
that suggest where and when stochastic algorithms
might be useful, namely
(i) deterministic algorithms grow exponentially with

the dimension d of the space, roughly Nd ( L
N be-

ing the linear size of the grid). This implies that to
have reasonable computing times, the number of
grid points may not be sufficient to obtain a local
resolution in the solution. In contrast a stochastic
simulation only grows with the dimension of the
process, typically of order d;

(ii) in general, deterministic algorithms aim at ob-
taining the global behavior of a solution in the
whole domain. It means that, even if an efficient
deterministic algorithm exists for the problem,
the stochastic algorithm might still be compet-
itive if only localized values of the solution are
desired. This comes from the very nature of the
representation processes that always start from a
definite point of the domain. Here, according to
what is desired, real or Fourier space represen-
tations should be used. For example by studying
only a few high Fourier modes one may obtain
information on the small scale fluctuations that
only a very fine grid might provide in a determin-
istic algorithm;

(iii) each time a sample path of the process is im-
plemented, it is independent from any other
sample paths that are used to obtain the expecta-
tion value. Likewise, paths starting from different
points are independent from each other. Therefore
the stochastic algorithms are a very natural choice
for parallel and distributed implementation;

(iv) stochastic algorithms may also be used in domain
decomposition methods [22–24]. For example, one
may decompose the space in subdomains and then
use in each subdomain a deterministic algorithm
with Dirichlet boundary conditions, the values on
the boundaries being found by a stochastic algo-
rithm.
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